
Things I Know About Client-Side Prediction
Phoenix Kahlo

1 BACKGROUND
1.1 What is video games? What is time?
We’ll establish some basic components of a singleplayer game, fo-
cusing on a Minecraft-like game as an example:
• State: The game has state in memory which can change
due to operations. This state can be sub-divided into smaller
pieces of state, such as blocks at particular coordinates, enti-
ties with particular UUIDs, what non-instantaneous actions
players are currently performing, etc.
• Rendering: A graphical representation of the current game
state will be repeatedly rendered onto the user’s screen. This
ideally occurs once for every time the user’s monitor re-
freshes, but may happen slower if the user’s computer cannot
render that fast.
• Inputs: Input actions performed by the user, such as pressing
keyboard keys or using the mouse, may translate to opera-
tions which affect the game state. For example, right-clicking
may place a block; tapping the space bar may trigger the
avatar to jump; and depressing the W key may place the
avatar into a state of trying to walk forward.
• Updates: Some pieces of game state will be subjected to
operations that occur not as the result of player input but
as a result of the passage of time, to give the impression of
changing continuously over time. For example, an object
subject to physics may be updated every 60th of a second by
simulating one 60th of a second of physics for it.

From this, we can model our singleplayer game as an event loop
in which state is repeatedly updated, in response to both user inputs
and the passage of time, and then rendered.

There are actually many subtle design decisions in how one
programs this outer loop. However, we can describe some ideal
properties:

(1) Ideally, a render operation occurs every time the user’s mon-
itor refreshes.

(2) Ideally, an update operation occurs in between each render
operation, and simulates the passage of the amount of time
that elapsed in the real world since the last update operation.

(3) Ideally, processing some input happens shortly after the user
performed the input.

From this, we can start to build up a notion of these input, output
(rendering), and update operations in terms of their relationship
with real world time.

In the logical world of the computer, we can envision the game as
a sequential chain of game states, in which there is a state, followed
by an operation that alters that state, followed by the subsequent
state, and then the next operation, etc.

In the real world, wall-clock time passes continuously. The user
performs input actions such as pressing keys at particular instants
in real-world time, and a rendering operation causes its version of
the game state to be displayed to the user at a particular instant in
real-world time.

There is an implicit notion that a game state at some point in
the chain reflects the consequences of all inputs that were processed
earlier in the chain. By extension, there is a notion that the physical
image resulting from a render operation transitively reflects the
consequences of all input operations earlier in the chain.

Let us declare a new ideal property in terms of these notions of
things reflecting the consequences of other things:
• The consequences of some input should be rendered shortly
after the input.

Clearly, ideal properties 1 and 3 are natural consequences of this.
There is a similar concept at play here in terms of updates.We say

that an update operation simulates the passage of a certain amount
of time. If an update operation simulates 1

60𝑠 of physics, there is a
notion that the subsequent game state reflects the passage of 1

60𝑠
more time than the previous state. This is a cumulative property;
if two states in the chain have 5 different 1

60𝑠 update operations
between them, then the second state reflects the passage of 5

60𝑠
more time than the first.

As such, we can declare this final intuition:
• A rendered image, in contrast to a previously rendered image,
should reflect the passage of an additional amount of time
equal to the amount of real-world time elapsed between
those renders.

Clearly, ideal property 2 is a natural consequence of this.

1.2 Wouldn’t it be nice...
Welp, now to take this beautiful architecture and streeeetch it out
into a distributed system. First, some basic definitional things:
• There are multiple clients.
• Each client must perform rendering operations locally.
• Input events may originate from any client.

We can generalize our previous principle here and say: Ideally,
the consequences of some input should be rendered on all clients
shortly after the input. Of course, we now have some additional
complications.

Consider a peer-to-peer configuration where there are 2 or more
clients all connected to each other directly, with no server. We can
fantasize about something that would be nice: Wouldn’t it be nice
if all operations were commutative?

If you could take any bag of input processing operations and
update operations, and apply them all to the same starting state,
and always get the same ending state no matter what order you
applied them in, that would be very convenient. That would allow
for the following algorithm:
• When an input occurs physically, the local client immediately
applies it locally, and also transmits it to all peers.
• When a client receives an input from a peer, it applies it
locally.
• Clients do update and rendering operations as they would
normally.

This is, of course, a description of how CRDTs work, and does
achieve the optimal input-to-render latency possible for all pairs
of inputs and clients. However, the defining property of CRDTs is
that they are painstakingly designed to be data types for which all
operations commute–this is not true in the general case of video
game logic.

There are many cases where the order of operations matters:

• The order between player 1 attempting to walk through a
door and player 2 closing the door may determine whether
player 1 successfully walks through the door or is blocked.
• The order between a player attempting to jump and that
player experiencing an update may determine whether the
player successfully jumps or whether it slides off of solid
ground before being able to do so.

Later, we’ll discuss how to exploit cases where operations do
commute–but for now, we’ll assume the worst case scenario that
nothing commutes, and explore how to cope with that.

1.3 Rollback
So, since operations don’t commute, it’s not enough for the different
clients to converge on a chain with the same set of operations in it;
they must converge on a chain with the same sequence of operations
in it. Each client locally applies its local inputs immediately after
they occur, which is optimal and thus correct as per the ideal of
minimizing input-to-render latency. The problem, then, must be
that each client is applying its peers’ inputs too late in the chain.

So: have the system track the wall-clock timestamp of each
operation, and make it so when a client receives an input from a
peer, if the timestamp of the input is earlier than the timestamp of
the last operation in its local chain, it "buries" it earlier in the chain,
somehow applying it retroactively "underneath" the operations
which it did afterwards. This is non-trivial.

Probably, this requires the client to:

(1) Revert the game state to the last version before the operation
should have occurred.

(2) Apply the newly introduced operation.
(3) Re-apply the sequence of operations afterwards.

As for how the client is able to revert its game state to a previous
version, the main ways to do this are:

• Copy-on-Write: The client can simply keep a complete
copy of each version of the game state. This is simple, but
has obvious CPU and RAM costs. However, it can work for
kinds of games where the game state is only a few kilobytes.
• Undo Log: In this approach, whenever the client does an
operation on its state, it also generates some "undo" record,
which contains whatever information the client needs to
undo that exact change, and saves it for later. Thus, to revert
to a previous state in the chain, the client goes through all
the undo records corresponding to operations after that state,
and un-does each one in reverse order.

For most operations, the undo records can simply contain a
copy of the previous version of all sub-pieces of state the operation
affects–thus becoming effectively a more granular version of copy-
on-write. The undo log approach is more compatible with large

amounts of game state, however, it becomes a cross-cutting piece
of complexity that infects all game logic.

1.4 Serialization (Server/Host)
There’s two completely unrelated definitions of "serialization" in
computer science: the commonly used, Comp Sci 200, bad definition,
which is "encoding an object into bytes," and the less commonly
used, Comp Sci 700 definition, which is "making things happen one
after another."

Let’s say you don’t want to do rollback. There are many valid
reasons for that. To avoid ever having to roll back an operation,
each client must ensure that any operation it performs really is
the next operation in what will ultimately be the agreed upon
correct order of operations. In other words, each client must avoid
performing an operation until it is somehow sure there won’t be
any not-yet-known operations before it.

Achieving this involves picking some node in the system to
be a central choke-point through which all events must flow. For
example, one of the clients, or perhaps an entirely new node known
as the "server," might be designated as the "host," and the system
could have the following algorithm:

• When an input occurs physically, the local client transmits
it to the host.
• When the host receives an input from a client, it transmits it
back to all clients in a message which conveys that it’s now
"committed."
• When a client receives a message from the host conveying
that an input is now committed, it applies it locally.

Unfortunately, this is not compatible with achieving optimal
input-to-render latency in all cases. Each client will experience
a delay equal to its network round trip latency with the host. If
two clients are physically 30 light milliseconds apart, there is no
physically possible way to avoid at least one client having a delay
of at least 30 light milliseconds. There is no way to cheat this.

1.5 More realistic client/server architecture
Nevertheless, there are a large number of practical engineering
advantages to this client/server architecture, which is why the vast
majority of multiplayer games in the wild are far closer to this than
to a peer-to-peer architecture. Games in the real world are also
likely to diverge from this abstract model in some additional ways:

• The server and client likely have slightly different versions
of game state–even beyond the sense in which operations
on the client may lag behind the server. The server likely
has some pieces of server-only state, such as for NPC AIs.
The client likely has some pieces of client-only state, such
as handles to resources for rendering graphically.
• Rather than inputs being transmitted from clients to the
server and then back to clients without actually modifying
them, the system likely defines two different types of mes-
sage: "actions", which flow from clients to the server, and
"edits," which flow from the server to clients.

As such, the more realistic story of an input travelling through
a client/server architecture sounds more like this:

2

(1) Input: The user right-clicks. The client reads the client-state
and determines that the user is trying to place a block at some
coordinates. It sends the server an action: "place ${BLOCK}
at ${XYZ}."

(2) Action: The server receives this. It reads the server-state
and confirms that 1. no block currently exists at ${XYZ} 2.
the user has a ${BLOCK} to place. It sets server-state block
${XYZ} to ${BLOCK}, and it sends all clients an edit: "set
block ${XYZ} to ${BLOCK}."

(3) Edit: The client receives this. It sets client-state block ${XYZ}
to ${BLOCK}.

One large advantage to splitting the game logic up like this is
that it relieves most of it from having to be deterministic. When the
client processes an input, or the server processes an action, they
can: read local-only state, use RNGs, do input, do non-deterministic
parallelism, have non-determinism bugs, run client-only or server-
only mods, tolerate floating point anomalies, etc. Only the edit
operation, and corresponding server-state mutations, are expected
to be fully deterministic and reproducible, and the logic for them is
usually very simple, akin to operations on a key/value store.

Another advantage to a client/server architecture is avoiding
cheating. Anti-cheating in video games is less like the mathemat-
ical guarantees of cryptosystems and more like fairness at the
Olympics, or perhaps two species of fish evolving to eat each other.
Still, though, locking the client down to just sending actions it
conceivably could do, and letting the server determine the conse-
quences of them, is less radically abusable than a protocol where
any client can broadcast edits throughout the system.

Finally, there are the advantages of a server being a reliable and
fixed point. The server is expected to stay running at a stable WAN-
accessible IP address. When a client joins the game, it initializes its
client-state by downloading the current state from the server–thus
allowing clients to come and go from a continuously running game.
The entity administrating the game can unilaterally manage the
server. More decentralized architectures must come up with more
complex contrivances for all of these things.

2 CLIENT-SIDE PREDICTION
2.1 What is client-side prediction?
For these reasons, most video games are stuck to the model that
the server-state is the "canonical" state, and that a thing happening
is defined as it happening on the server. Thus, when a user tries to
perform an action, there is an up-stream network delay before it
actually happens, followed by a down-stream network delay before
the user observes the effects of it.

For some actions, this delay is acceptable. However, for things
like walking around, or placing and breaking blocks, this may seri-
ously degrade the experience. As such, we need techniques for the
client to predict and immediately display the expected consequences
of at least some actions, while still staying synchronized with the
server if those predictions are incorrect. Moreover, this must be done
in a way that:
• Is subjectively aesthetically unobtrusive.
• Performs efficiently.
• Avoids infecting all game logic with a need to be perfectly
reproducible.

2.2 A basic prediction algorithm
Placing and breaking blocks is a simpler case for client-side predic-
tion than walking around, because the player’s body is continuously
being subjected to physics updates, whereas blocks usually are not
(more on that later).

First off, we’ll assume our network protocol includes acks, such
that when the server receives and processes an action from a client,
in addition to transmitting the consequent edits to all clients, it also
acknowledges to the original client that it processed that message.
Also, we’ll hand-wave away the possibility of the client being in
a partially received state; the client receives all the edits resulting
from some action plus acking of that action atomically.

From these building blocks we can implement a basic client-
side prediction algorithm. Actions subject to prediction will need 2
additional procedures implemented:

• Actions subject to prediction will need a client-side "predict
consequences" operation. This operation reads and mutates
the client-state to emulate the consequences of the action
being processed on the server.
• When doing so, it must generate and store some "undo"
record(s) which contain whatever information is needed to
undo those exact changes, so that an "undo" operation can
later be performed to restore the original client-state.

This is very similar to the rollback technique discussed earlier.
However, it is done in a way that limits the scope of what logic
needs to be made reproducible. Only actions that the developer
wishes to make client-side-predictable need to have a "predict con-
sequences" procedure implemented, and only mutations made by
"predict consequences" procedures need to have rollback function-
ality implemented.

Given those operations, the algorithm looks like this:

• When the client sends the server a predictable action, the
client also pushes it to the back of a queue of actions.
• When the server acks one of those predictable actions, the
client pops it from the front of the queue of actions.
• Before rendering, the client ensures that all actions in the
queue have their predictions applied, by running the "predict
consequences" operation on each one front-to-back.
• Before applying edits received from the server, the client
ensures that any applied predictions are reverted, by running
the "undo" operation on all undo records in reverse order.

To illustrate how this handles a successful prediction, let’s tell a
story where block ${XYZ} starts as AIR, then Alice places WATER at
${XYZ}, then 3ms later Bob places STONE at that same ${XYZ} (note:
placing STONE where there is WATER overwrites the WATER with
STONE), and the latency is 10ms:

(1) 0ms: Alice sends "place WATER at ${XYZ}" to the server,
and stores it in her prediction queue. Alice locally sets block
${XYZ} to WATER, and locally stores the undo record "set
block ${XYZ} to AIR."

(2) 3ms: Bob sends "place STONE at ${XYZ}" to the server, and
stores it in his prediction queue. Bob locally sets block ${XYZ}
to STONE, and locally stores the undo record "set block
${XYZ} to AIR."

3

(3) 10ms: Server receives Alice’s action, sets block ${XYZ} to
WATER, transmits "set block ${XYZ} to WATER" to both
clients, and transmits an ack to Alice.

(4) 13ms: Server receives Bob’s action, sets block ${XYZ} to
STONE, transmits "set block ${XYZ} to STONE" to both
clients, and transmits an ack to Bob.

(5) 20ms (Alice): Alice receives server’s first edit, and ack.
(a) Revert predictions: Alice applies her undo record, setting

block ${XYZ} to AIR, and discards it.
(b) Prediction acked: Alice discards her prediction.
(c) Apply edit: Alice sets block ${XYZ} to WATER.

(6) 20ms (Bob): Bob receives server’s first edit.
(a) Revert predictions: Bob applies his undo record, setting

block ${XYZ} to AIR, and discards it.
(b) Apply edit: Bob sets block ${XYZ} to WATER.
(c) Predict consequences: Since Bob’s action is still un-

acked, he locally sets block ${XYZ} to STONE, and locally
stores the undo record "set block ${XYZ} to WATER."

(7) 23ms (Alice): Alice receives server’s second edit. With no
predictions active, she simply sets block ${XYZ} to STONE.

(8) 23ms (Bob): Bob receives server’s second edit, and ack.
(a) Revert predictions: Bob applies his undo record, setting

block ${XYZ} to WATER, and discards it.
(b) Prediction acked: Bob discards his prediction.
(c) Apply edit: Bob sets block ${XYZ} to STONE.

Now, consider how this would have gone differently if instead of
placing WATER at ${XYZ}, Alice had placed DIRT. This would have
caused Bob’s attempt to place STONE at ${XYZ} to fail, as, unlike
placing a block where there is WATER, which simply overwrites
the WATER, trying to place a block where there is some other block
such as DIRT cannot be done. In terms of how the algorithm would
handle that:

• At 13ms, the server would not set block ${XYZ} to STONE,
because there would already be DIRT there. However, it still
would send Bob an ack.
• At 20ms, Bob’s action would still be un-acked, so he would
still predict its consequences, but instead of predicting that
block ${XYZ} would be set to STONE, he would correctly
predict that it would have no consequences, because in his
client-state, there would already be DIRT there.

Moreover, even if the predicted consequences of an action are
completely wrong, the client-state will converge back to the correct
state after the action is acked. The main risk of desynchronization
here is if the client’s logic for undoing predictive edits doesn’t work
right. However, the complexity here is manageable since these undo
records can usually simply contain a copy of the previous version
of edited sub-pieces of state, rather than more complex logic.

2.3 Predicting updates
We can extend this algorithm to predict updates as well. The server
must perform updates frequently. When it does so, we’ll have it
transmit to all clients the current wall-clock timestamp. This plays
a role similar to acks–and similarly to acks, we’ll hand-wave to say
that the client receives all edits resulting from some update plus
that update’s corresponding timestamp atomically.

We’ll give the client a "predict update" procedure. It takes a delta
time as input, and reads and mutates the client-state to emulate
the consequences of that long of an update being performed on
the server. When doing so, it generates undo records to undo these
mutations, just like the predict consequences operation.

Before rendering, in addition to the client ensuring it has all
predicted actions applied, it also ensures it has predicted updates
applied equal to the duration from the wall-clock timestamp of its
received state to the wall-clock timestamp of the current moment
at which it is rendering.

Similarly to how not every action needs a "predict consequences"
procedure implemented, the client’s "predict update" procedure
does not need to predict the entire set of likely consequences of a
server-side update. In particular, it may predict only the physics
of some sub-pieces of state for which prediction is particularly
important, such as players’ bodies.

2.4 The up-stream latency problem
What would happen if we tried to apply this prediction algorithm
to the players walking around? Unfortunately, there will be some
additional complications.

Consider a simplified version of physics and walking, which is
less similar to walking and more similar to operating a jetpack in
outer space.
• Each player has a pos vector and a vel vector.
• The update operation is: pos← pos + dt · vel.
• The permitted action is "accelerate by ${DVEL}", which is
performed as: vel← vel + ${𝐷𝑉𝐸𝐿}.

Doing an accelerate action doesn’t cause any visible effects on
its own, as it only changes the velocity, not the position. It isn’t
until updates occur after the accelerate action that the effect is
apparent. Here, the lack of commutativity between the accelerate
action and the update operation is a fundamental part of what
they are–the effect of an accelerate action plus 100ms of updating
wholly depends on whether the accelerate action happens before
the update, after the update, or in between two 50ms updates.

The client-side prediction algorithm we established amounts
to always rendering the state last received from the server with
active predictions applied on top of it. It’s worth noting that this
isn’t actually a very "accurate" prediction. When the client sends the
server a "place ${BLOCK} at ${XYZ}" action, it won’t be processed
until after an up-stream network delay. If the client were trying to
predict the current server-state as accurately as possible, it would
measure the network RTT and predict that the action would occur
after 0.5 RTT. That would be wrong, though, because accuracy is
the wrong goal.

We treat the server-state as the canonical version of state for
practical reasons, but the ideal behavior is still to render the con-
sequences of some input shortly after the input. When the user
right-clicks an AIR block at ${XYZ} with a STONE block, the conse-
quence is probably that block ${XYZ} is set to STONE. By predicting
that consequence immediately, the client achieves the ideal of low
input-to-render latency. It is the server-state which doesn’t reflect
the consequences until after a delay.

Let us ask, then, what are the consequences of an "accelerate
by ${DVEL}" action? The consequences are that, for state 3ms of

4

wall-clock time after the action occurred pos is 3ms · ${𝐷𝑉𝐸𝐿}
beyond what it would otherwise be, and for state 6ms of wall-clock
time after the action occurred pos is 6ms · ${𝐷𝑉𝐸𝐿} beyond what
it would otherwise be, etc. Herein lies the problem: due to the up-
stream network delay, the client and the server will disagree on
what instant of wall-clock time the action occurred–and, unlike
in the case of placing a block, that means they will disagree on its
consequences.

2.5 The "one step ahead" technique
Let’s say the network latency is a constant 10ms in each direction,
the player starts with a position and velocity of 0, and at 0ms the
client does an "accelerate by ${DVEL}" action. This means from
0ms to 20ms the client will be rendering server-state from before
the server processed the action, with two predictions applied over
it: 10ms of predicted updates, and the predicted "accelerate by
${DVEL}" action. We must ask: how does the client decide whether
to apply the predicted action before the 10ms predicted update, after
the 10ms predicted update, or in between two predicted updates
totalling to 10ms?

(1) To always predict the action before the update would
be patently absurd. That would mean that at [1ms, 2ms, 3ms], the
client’s received state would have been sent by the server at [-9ms,
-8ms, -7ms]–before the client even sent the action–yet the client
would be predicting that the server would process the action as the
very next operation on the server before any further updates.

(2) Conversely, to always predict the action after the update
would be completely ineffacious. At [17ms, 18ms, 19ms], the client’s
received state would have been sent by the server at [7ms, 8ms, 9ms],
and the client would be predicting that the server would process the
action at [17ms, 18ms, 19ms]. In addition to this being unrealistically
late, it would produce no visible effects–as an accelerate action only
produces visible consequences when updates are applied after.

(3) One might be tempted to make the client always predict
that the server would process the action at 0ms. So, at 1ms, the
client’s received state would have been sent by the server at -9ms,
and the client would predict 9ms of update, then the action, then
1ms of update. At 9ms, the client’s received state would have been
sent by the server at -1ms, and the client would predict 1ms of
update, then the action, then 1ms of update. However, at, say, 13ms,
the client’s received state would have been sent by the server at
3ms, but the action would still be un-acked. At that point, the
client would like to predict -3ms of update, then the action, then
13ms of update–but predicting negative duration of update isn’t
an operation we’re assuming it can do. So it’s unclear what would

happen there. Perhaps from 10ms to 20ms it would simply predict
the action followed by 10ms of update.

(4) Amodified version of that approach would be to estimate
the network RTT and always the predict that the server would
process the action 0.5-RTT after the client sent it–in this case, 10ms.
This means that, from 0ms to 10ms, the client would predict 10ms
of update, but forego predicting the action at all. At 11ms, the client
would predict 9ms of update, then the action, then 1ms of update.
At 19ms, the client would predict 1ms of update, then the action,
then 9ms of update. This approach is the most accurate so far at
predicting the current server-state, but, as established, accuracy is
the wrong goal, and this approach fails to fully minimize input-to-
render latency.

(5) That "accurate" approach is looking like the closest to
what we want so far, at least in shape. The main problem is that
everything is just happening 10ms too late. So... what if... instead
of predicting what state the server has now... we predicted what
state the server would have 10ms in the future?

Consider this algorithm: the client estimates the network RTT
and always predicts that the server would process the action 0.5-
RTT after the client sent it. When the client renders, in addition to
predicting all un-acked actions, it predicts updates from the wall-
clock timestamp of the received state to 0.5-RTT after the wall-clock
timestamp of the current moment at which it is rendering.

At 1ms, the client’s received state was sent at -9ms, and the client
predicts 19ms of updates, then the action, then 1ms of updates. At
10ms, the client’s received state was sent at 0ms, and the client
predicts 10ms of updates, then the action, then 10ms of updates.
At 19ms, the client’s received state was sent at 9ms, and the client
predicts 1ms of updates, then the action, then 19ms of updates.

Although this approach might seem deranged, it actually checks
off a lot of our boxes:

• Input-to-render latency: Renders begin to reflect the con-
sequences of some input immediately after the input.
• Passage of time: Successive renders reflect the consequences
of the passage of the amount of time between those renders.
• Engineering constraints: The client only has to roll back
its predictions, and the server doesn’t have to roll back any-
thing.

However, this approach will still need a bit more refinement
before it’s quite ready to implement.

2.6 Philosophizing why that works
You might not be content to simply accept that something like this
works just because it seemed to work in this example. This section

5

will try to conceptualize why doing this isn’t a problem–skip it if
you don’t care.

When articulating our ideals of how the progression of game
states corresponds to the progression of real-world time, it’s worth
noting that we never rely on absolute concepts of time, but only
concepts of a relative amount of time passing when comparing
two things. A game-state doesn’t inherently have any signature
absolute instant in time it represents, and a wall-clock timestamp
has no meaning when considered in isolation. Rather, one game-
state relative to a previous game-state can reflect the consequences
of a certain duration of time being simulated since the former game-
state, and one wall-clock timestamp can be said to be a certain
duration after a previous wall-clock timestamp. The important
relationship to uphold between game-states and real-world time is
not to ensure that a render at a particular wall-clock instant renders
a specific game-state, but to ensure that a render at a particular
wall-clock instant reflects the consequences of the correct amount
of time passing relative to previous renders and previous physical
inputs.

We see the progression of game-states on the server as the canon-
ical progression of game-state, and because of this it is tempting to
see the game-state in the server’s memory at a particular moment
in time as canonically corresponding to that moment in time. How-
ever, this is a confusion of concepts. While it’s true that physical
computations occur over certain real world intervals of time, all that
ultimately matters is when these computations manifest physically
by physically displaying a rendered image.

As such, it may be more helpful to think of this algorithm not as
the server holding the canonical present version of state and the
client as rendering a predicted future version of state, but rather, as
the server holding a canonical past version of state and the client
as rendering the predicted present version of state. That is:

• The wall-clock moment represented by some point in the
game-state chain is by definition the moment it is rendered
by the client.
• The server adds updates to the game-state chain to keep it
updated to 0.5-RTT in the past.
• Since it takes 0.5-RTT for that state to reach the client, the
client’s received state is always 1-RTT behind the present,
and so the client must predict 1-RTT of updates.
• When the client performs an action, it wishes for the action
to occur at the present moment. It sends it to the server, and
it arrives 0.5-RTT later, at which point the game-state in
the server’s memory represents the moment the action is
supposed to occur–thus, the server can simply apply it upon
receiving it.

What, then, is the sense in which the progression of game-states
on the server is the "canonical progression of game-state?" Events
that occur on the server are canonical in the sense that they are
committed. When an event occurs on the server, it is forever "locked
in" as the very next event that occurs after all previous events; no
event will ever be buried "underneath it." This allows the server
to perform these operations in a way that renders it inherently or
practically unable to undo them–it will never have to roll back to a
previous state.

Recall something that was said in a previous section: "To avoid
ever having to roll back an operation, each client must ensure that
any operation it performs really is the next operation in what will
ultimately be the agreed upon correct order of operations. In other
words, each client must avoid performing an operation until it
is somehow sure there won’t be any not-yet-known operations
before it." Given that the server wishes to avoid rollbacks, this
explains why the server-state must lag in the past by the up-stream
network delay: The ultimately correct order of operations must
entail actions occurring at the point representing the moment the
action was sent. Thus, at any given moment, the server can only be
sure of the correct order of operations up to one up-stream delay
in the past–since the correct order of operations after that could be
many possible permutations of updates and actions depending on
messages-in-transit the server does not yet have access to. This is
why the server must avoid performing update operations until it is
sure it has received all messages sent by a certain point.

2.7 Variable network delay
The algorithm described above is extremely close to what we’ll
go with. The main problem left to address is the assumption that
network delay is constant. In truth, network delay may fluctuate
noisily due to both external conditions and internal queueing de-
lays. As such, we’ll devise an algorithm that makes no reference to
estimated RTT whatsoever.

We’ll create an abstraction called a "time stream." The shared
game world will contain multiple time streams: a single time stream
for the server, plus one time stream for each client currently playing
the game. For each time stream, both the server and each client
will store a wall-clock timestamp, the moment that time stream has
progressed to.

Rather than having a single update operation that simulates time
for all game-state uniformly, we’ll say that each sub-piece of state
subject to updates belongs to a single time stream. Most sub-pieces
of state will belong to the server time stream, but each client’s
avatar will belong to that client’s time stream. We’ll have to split
the update procedure up into one that simulates a certain duration
of server-time, and one that simulates a certain duration of a certain
client’s client-time.We’ll also have to split up the client-side "predict
update" procedure in the same way.

For any time stream, the server has the ability to advance that
time stream forward to a given target wall-clock timestamp. When
the server does so it:

(1) Performs that time stream’s update operation for the dura-
tion from the time stream’s timestamp to the target.

(2) Sets the time stream’s timestamp to the target timestamp.
(3) Broadcasts to all clients a "server-time advanced to ${TS}" or

"client-time of ${CLIENT} advanced to ${TS}" message.

From those building blocks, this will be our algorithm:

• Each client must frequently (eg. as often as it renders) send
the server a "declare time ${TS}" message, where ${TS} is the
current wall-clock timestamp. When the client does so, it
also stores ${TS} locally as its "declared" timestamp.
• When the server receives a "declare time ${TS}" message
from a client, it advances that client’s time stream to ${TS}.

6

• Frequently, the server advances the server time stream to
the current wall-clock timestamp.
• When a client receives a "(time stream) advanced to ${TS}"
message, it stores ${TS} locally as the timestamp of that time
stream’s received state. As usual, we’re hand-waving to as-
sume the client receives that message plus all corresponding
edits atomically.
• Before rendering, the client ensures that it has the following
predictions applied:
– For each time stream, predicted updates to that time stream
for the duration from that time stream’s received times-
tamp to the client’s declared timestamp.

– For each un-acked action, the predicted consequences of
that action, inserted between predicted updates to the
client’s own time stream at the point representingwhat the
client’s declared timestamp was upon the client sending
that action.

This algorithm ensures that the server-state of a client’s avatar
always lags behind the present by that client’s current up-stream
network delay, and all rendered state maintains a sum of received
and predicted updates that matches the progression of real-world
time, even if up-stream and down-stream latency are fluctuating
wildly.

Unfortunately, this algorithm loses the ability to have clients
immediately predict actions on sub-pieces of state other than their
own avatar. For example, a "shove" action that lets a client apply
acceleration to an NPC or another player could not be applied
immediately. However, actions such as placing and breaking blocks
can still be applied immediately, as blocks, not usually being subject
to updates that cause the consequences of actions to amplify over
time, are effectively not really subject to any time stream.

2.8 Hole-punching
A super cool bonus of this architecture is that it is actually extremely
conducive to TCP/UDP hole-punching, aka. NAT traversal, where
the server is able to convince / trick two clients’ routers into letting
the clients talk to each other directly, with lower latency than
having information be relayed through the server.

To exploit this, we can have pairs of hole-punched clients send
their actions to each other in addition to the server. We’ll also need
generalize our acking system so the server informs a client when it
has processed one of its hole-punched peer’s actions, in addition to
its own.

This means that, at a given moment in time, in addition to a
client having a prediction queue of its own un-acked actions, it may
also have a queue of some of its peer’s un-acked actions. As such,
when the client predicts updates to that peer’s time stream, it can
interject the predicted consequences of that peer’s actions, just as
it would its own.

A ping of 40ms is considered basically fine, but this hole punch-
ing technique could allow a client to observe the consequential
actions of a peer after only 20ms, which is considerably better. Fur-
thermore, this would allow two people playing in the same physical
building to observe the consequences of each others’ actions almost
immediately, even if the actual server is far away.

3 MISCELLANEA
3.1 Discrete and continuous updates
We have been assuming that update operations can be split into
many smaller updates and still have the same cumulative effect so
long as they sum up to the same delta time. However, it is likely
overly burdensome to uphold this invariant for all update logic.

For example, acceleration on objects due to gravity is usually
not actually applied continuously, but rather applied as an instanta-
neous change in velocity once each time step. This lack of smooth-
ness is not noticeable on its own, however, if the server and client
are applying acceleration at different frequencies than each other,
it actually causes noticeable desynchronization.

To solve this, we implement two different update procedures:
• A "continuous update" procedure, which accepts a delta time
and is required to have the same effect regardless of how it’s
broken up into smaller time steps.
• A "discrete update" procedure, which is guaranteed to run
once every 1

20𝑠 .
The continuous update moves objects via swept collision, drives

animations, and doeswhatever else actually needs to change slightly
between each rendered frame for aesthetic reasons. The discrete
update does acceleration, as well as anything else that doesn’t have
to go in the continuous update.

The client and server agree on a fixed schedule for discrete
updates by designating some 𝑡0, such that a discrete update occurs
at 𝑡0 and 𝑡0 + 50𝑚𝑠 and 𝑡0 + 100𝑚𝑠 and 𝑡0 + 150𝑚𝑠 , etc. Continuous
updating happening between them.

Thus, when an update operation is invoked to advance some time
stream from its current wall-clock timestamp to a target timestamp,
it does so by performing the appropriate sequence of continuous
and discrete updates in accordance with the schedule defined by 𝑡0

3.2 Smoothing
If a client is receiving state about an entity X seconds in the past,
and then predicting updates up to the present, and it receives an
unexpected change to that entity’s velocity in the past, the predicted
present position will "snap" to a new position.

Although this achieves the ideal of the client reflecting the ex-
pected consequences of all events as soon as it becomes aware of
those events, the appearance of teleporting is aesthetically jarring
enough that it’s worth smoothing over. To achieve this, we must
add a new layer of abstraction on top of the prediction layer of
abstraction that visually smooths over these unexpected shifts.

4 CONCLUSION
Go forth; all the knowledge oyu need is within you.

7

	1 Background
	1.1 What is video games? What is time?
	1.2 Wouldn't it be nice...
	1.3 Rollback
	1.4 Serialization (Server/Host)
	1.5 More realistic client/server architecture

	2 Client-Side Prediction
	2.1 What is client-side prediction?
	2.2 A basic prediction algorithm
	2.3 Predicting updates
	2.4 The up-stream latency problem
	2.5 The "one step ahead" technique
	2.6 Philosophizing why that works
	2.7 Variable network delay
	2.8 Hole-punching

	3 Miscellanea
	3.1 Discrete and continuous updates
	3.2 Smoothing

	4 Conclusion

